How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?

نویسندگان

  • Edward P O'Brien
  • Greg Morrison
  • Bernard R Brooks
  • D Thirumalai
چکیده

Single molecule Förster resonance energy transfer (FRET) experiments are used to infer the properties of the denatured state ensemble (DSE) of proteins. From the measured average FRET efficiency, , the distance distribution P(R) is inferred by assuming that the DSE can be described as a polymer. The single parameter in the appropriate polymer model (Gaussian chain, wormlike chain, or self-avoiding walk) for P(R) is determined by equating the calculated and measured . In order to assess the accuracy of this "standard procedure," we consider the generalized Rouse model (GRM), whose properties [ and P(R)] can be analytically computed, and the Molecular Transfer Model for protein L for which accurate simulations can be carried out as a function of guanadinium hydrochloride (GdmCl) concentration. Using the precisely computed for the GRM and protein L, we infer P(R) using the standard procedure. We find that the mean end-to-end distance can be accurately inferred (less than 10% relative error) using and polymer models for P(R). However, the value extracted for the radius of gyration (R(g)) and the persistence length (l(p)) are less accurate. For protein L, the errors in the inferred properties increase as the GdmCl concentration increases for all polymer models. The relative error in the inferred R(g) and l(p), with respect to the exact values, can be as large as 25% at the highest GdmCl concentration. We propose a self-consistency test, requiring measurements of by attaching dyes to different residues in the protein, to assess the validity of describing DSE using the Gaussian model. Application of the self-consistency test to the GRM shows that even for this simple model, which exhibits an order-->disorder transition, the Gaussian P(R) is inadequate. Analysis of experimental data of FRET efficiencies with dyes at several locations for the cold shock protein, and simulations results for protein L, for which accurate FRET efficiencies between various locations were computed, shows that at high GdmCl concentrations there are significant deviations in the DSE P(R) from the Gaussian model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells.

The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thali...

متن کامل

Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells[W]

The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE a-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thali...

متن کامل

Fluorescence characterization of immobilization induced enzyme aggregation.

Förster resonance energy transfer (FRET) has been used to show that the average distance between proteins decreases when the protein is immobilized within polymer scaffolds, indicating that the immobilization process is inducing aggregation.

متن کامل

Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots.

Applications of polymeric semiconductors in organic electronics and biosensors depend critically on the nature of energy transfer in these materials. Important questions arise as to how this long-range transport degrades in amorphous condensed solids which are most amenable to low-cost optoelectronic devices and how fast energy transfer could occur. Here, we address these in disordered, densely...

متن کامل

Resonance energy transfer from organic chromophores to fullerene molecules

The mechanism of charge separation in polymeric bulk heterojunction photovoltaic cells is usually described as electron transfer from the absorbing polymer to an electron acceptor material such as 6,6 -phenyl C61 butyric acid methyl ester PCBM . We consider the possibility of energy transfer to PCBM as another potential mechanism for charge separation. We demonstrate resonance energy transfer f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 12  شماره 

صفحات  -

تاریخ انتشار 2009